

AiroCheck.

Eco Monitor with Display

Measures environmental conditions, particulate matter, pollutant gases, light, sound and motion with a single sensor.

Product Overview

AiroCheck Eco Monitor is a customizable and compact wireless indoor air quality sensor designed to measure and monitor various parameters in the air to assess the quality of the air we breathe.

These sensors are valuable tools for detecting and quantifying environmental conditions, pollutants, and particulate matter, providing near real-time or periodic data on air quality conditions.

The 4.2-inch E-ink display offered in the option with screen, with its ultra-low power consumption and broad viewing angle, presents real-time performance data, making it well-suited for assessing indoor environmental conditions and comfort.

AiroCheck Eco Monitor wirelessly provides near real-time and exceptionally accurate data through low-power, long-range communication. Utilizing this data and dashboards facilitates the monitoring and reporting of air quality performance.

Versions available include:

Eco Monitor 3 in 1: Sensor for monitoring temperature, humidity and CO2 levels.

Eco Monitor 7 in 1: Sensor for monitoring temperature, humidity, CO2, TVOC, PM1, PM2.5 and PM10 levels.

Eco Monitor 8 in 1: Sensor for monitoring temperature, humidity, CO2, TVOC, PM1, PM2.5, PM10 and Ozone levels.

Eco Monitor 11 in 1: Sensor for monitoring temperature, humidity, CO2, TVOC, PM1, PM2.5, PM10, Ozone, Lux, Noise and Motion.

The sensors within **Eco Monitor** can also be customized to measure Dust, Formaldehyde (HCHO), Oxygen (O_2) , Hydrogen Sulfide (H_2S) , Methane (CH_4) , Carbon Monoxide (CO), Nitrogen Dioxide (NO_2) , Sulphur Dioxide (SO_2) , Hydrogen Gas (H_2) , Ammonia (NH_3) and THI for swift assessment of environmental conditions that may affect microbial activity such as bacteria and fungi.

Product Features

Customizable sensor configuration based on application requirement.

Wireless data transmission **Option through** LoRaWAN®, and/or WIFI wireless protocol

Secure operation with top-down encryption (Wireless models)

Easy Performance Management through MachineSens IoT Platform

Integration with Building Management System through MQTT

Specifications

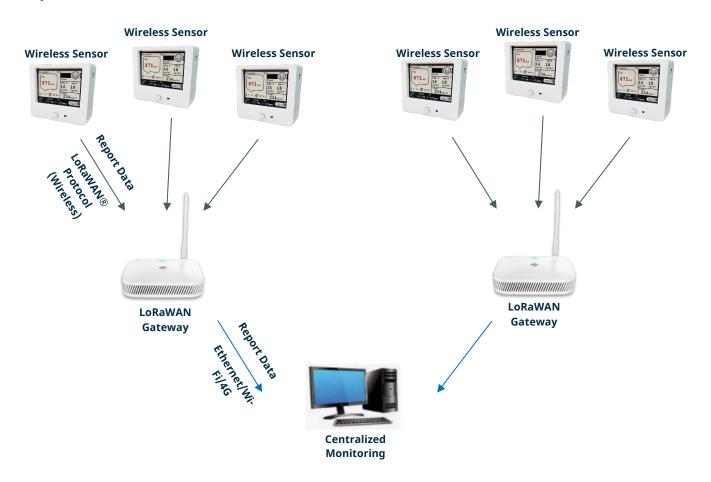
General		
Power Input	5V DC	
Material	ABS Flame Redundant Shell	
Operating temperature	-10 °C to +50 °C	
Storage temperature	-20 °C to +70 °C	
Relative Humidity	0% to 95%RH	
Environment	Indoor	
IP Class	IP30	
Mounting Options	Wall Mounted	
Dimensions (HxWxD)	100 x 110 x 47 mm	
Display	Black & White E-Ink Screen	
Sensor Calibration	Not Required (with auto calibration algorithm)	
Wireless Communication		
Technology	LoRaWAN®	
Frequency	EU868 (868 Mhz)	
Transmit Range	500m inside Building, 2KM Open Air	
Security	128 AES Encryption	

Data Format		JSON			
Device Class		Class C			
Activation Method		OTTA (Over-The-Air-Activation)			
Sensors					
Parameters	Resolution	Range	Accuracy	Operating Principle	
Carbon Dioxide (CO ₂)	1 ppm	400 ppm ~ 5000 ppm	50ppm +3% Reading	Digital NDIR	
TVOC	0.001mg/m3	0 ~ 5 mg/m3	≤±10% Reading	MEMS	
PM2.5	1 μg/m3	0 ~ 1000 μg/m3	≤±10% Reading	Laser Scattering	
PM10	1 μg/m3	0 ~ 1000 μg/m3	≤±10% Reading	Laser Scattering	
Temperature	0.1°C	-40 ~100 °C	<±0.2°C	MEMS	
Humidity	0.1%RH	0 ~ 99%	≤±2% RH	MEMS	
Ozone (O ₃)	0.001 ppm	0 ppm ~ 10 ppm	≤±2% Reading	Electrochemical	
Lux	1 Lux	0 ~ 65535 Lux	≤±7% Reading	Photodiode	
Atmospheric Pressure	0.1Kpa	30 ~ 110Kpa	≤±0.15Kpa	MEMS	
Motion					
Operating Principle		Passive infrared (PIR)			
Status		Vacant/Occupied			
Detection		80° Horizontal & 60° Vertical			
Noise					
Temperature Range		-40 °C to 85 °C			
Open Loop Gain Avol		125dB (RL = 100kΩ)			
Rejection Ratio		112dB PSRR & 126 dB CMRR			
Life Expectancy of Each sensor					
T, RH, TVOC, C	O _{2,}	10 Years			
Light, Noise		3 Years			

HCHO, O₃

2 Years

PM 2.5, PM 10	≥ 40,000 hours
Certifications	
Regulatory	CE
Environmental	RoHS


Architecture

The **AiroCheck Eco Monitor** air quality sensors employ cutting-edge communication technology, LoRaWAN which provides low power consumption as well as long range signal propagation to enable real-time control and monitoring.

Our smart gateway collects near real-time data from all wireless sensors within range, converts it into an easy-to-use JSON format, and publishes it via the MQTT protocol.

Data can be transmitted to any local or cloud MQTT broker through Ethernet, LTE (4G), or WIFI.

Integration to Building Management System (BMS) can be achieved using an external MQTT to BACnet converter.

